Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 467: 133734, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38330647

RESUMO

Microplastics and antibiotics not only pollute aquatic environments and threaten human health, but are also tricky to remove. Microplastics adsorb antibiotics, and, before being released into the natural environment, most microplastics pass through some wastewater treatment and/or disinfection (such as chlorination) facilities. It is therefore necessary to understand how these treatment processes may affect or alter microplastics' properties, particularly their ability to adsorb antibiotics, and whether or not the two, when bound together, may present exacerbated harm to the environment. This study used both laboratory tests and molecular dynamics simulation to investigate the mechanism through which chlorinated microplastics (specifically polystyrene) adsorb the antibiotic tetracycline, and showed that chlorination gave the polystyrene a larger interaction area (> 21%) and more free energy (> 14%) to adsorb tetracycline. Van der Waals (vdW) forces played a more dominant role than electrostatics in facilitating tetracycline's adsorption. Moreover, a density functional theory analysis demonstrated that the vdW potentials of the microplastics decreased as more and more hydrogen atoms became replaced by chlorine, suggesting a facilitation of the adsorption of polycyclic antibiotic molecules. The experimental results confirmed the simulation's prediction that a higher degree of chlorination significantly increases the polystyrene's adsorption capacity, whereas pH and salinity had almost no effect on the adsorption. This study demonstrates that disinfection elevates the risk of antibiotics adhering to and accumulating on the surface of microplastics.


Assuntos
Antibacterianos , Halogenação , Humanos , Microplásticos , Plásticos , Adsorção , Poliestirenos , Tetraciclina
2.
J Environ Manage ; 345: 118871, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37657292

RESUMO

Controlling nonpoint source pollution (NPSP) is very important for protecting the water environment, and surface-flow constructed wetlands (SFCWs) have been widely established to mitigate NPSP loads. In this study, the pollutant removal efficiencies, greenhouse gas (GHG) emissions, and chemical and microbial community properties of the sediment in a large-scale SFCW established beside a plateau lake (Qilu Lake) in southwestern China to treat agricultural runoff were evaluated over a year. The SFCW performed best in terms of nitrogen removal in autumn (average efficiency of 63.5% at influent concentrations of 9.3-35.4 mg L-1) and demonstrated comparable efficiency in other seasons (23.7-40.0%). The removal rates of total phosphorus (TP) and chemical oxygen demand (COD) were limited (18.6% and 12.4% at influent concentrations of 1.1 and 45.5 mg L-1 on average, respectively). The SFCW was a hotspot of CH4 emissions, with an average flux of 31.6 mg m-2·h-1; moreover, CH4 emissions contributed the most to the global warming potential (GWP) of the SFCW. Higher CH4 and N2O fluxes were detected in winter and in the front-end section of the SFCW with high pollutant concentrations, and plant presence increased CH4 emissions. Significant positive relationships between nutrient and heavy metal contents in the SFCW sediment were detected. The microbial community compositions were similar in autumn and winter, with Thiobacillus, Lysobacter, Acinetobacter and Pseudomonas dominating, and this distribution pattern was clearly distinct from those in spring and summer, with high proportions of Spirochaeta_2 and Denitratisoma. The microbial co-occurrence network in spring was more complex with stronger positive correlations than those in winter and autumn, while it was more stable in autumn with more keystone taxa. Optimization of the construction, operation and management of SFCWs treating NPSP in lake watersheds is necessary to promote their environmental benefits.


Assuntos
Poluentes Ambientais , Gases de Efeito Estufa , Microbiota , Estações do Ano , Áreas Alagadas
3.
Environ Pollut ; 271: 116328, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33360581

RESUMO

Biochar substrates and tidal flow (TF) and intermittent aeration (IA) operation modes have recently been applied to improve the treatment performance of constructed wetlands (CWs), but their roles in regulating greenhouse gas (GHG) emissions from CWs are still unclear. In this preliminary study, CO2, CH4 and N2O fluxes and associated microbial characteristics in four groups of subsurface-flow CWs, i.e., ceramsite CWs (C-CWs), biochar-amended CWs (B-CWs), intermittently aerated B-CWs (AB-CWs) and tide-flow B-CWs (TB-CWs), were comparatively investigated. The results showed that biochar amendment significantly mitigated CH4 and N2O fluxes from the CWs by supporting higher abundances of mcrA and nosZ genes and higher ratios of pmoA/mcrA and nosZ/(nirK + nirS), thus reducing global warming potential (GWP, a decrease of 55.8%), in addition to promoting total nitrogen (TN) removal by 41.3%, mainly by increasing the abundances and activities of nitrifiers and denitrifiers. The TF mode efficiently improved nitrogen removal, but it greatly increased GHG fluxes since large amounts of GHGs escaped from the empty CW matrix after water draining. IA abated GHG emissions from the CWs, mainly after aeration. TF and IA decreased the abundances of functional bacteria and archaea related to C and N transformation, except nitrifiers, and shaped the microbial community structures. The application of a biochar substrate and IA mode can facilitate the design and operation of CWs in a more ecologically sustainable way.


Assuntos
Gases de Efeito Estufa , Carvão Vegetal , Gases de Efeito Estufa/análise , Nitrogênio , Óxido Nitroso/análise , Áreas Alagadas
4.
J Hazard Mater ; 404(Pt A): 124125, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33049629

RESUMO

Gravel-based subsurface-flow constructed wetlands (CWs) amended with a walnut shell (WS) substrate were established to treat synthetic acid mine drainage (AMD) in this study, and artificial domestic wastewater (DW) and plant litter broth (PLB) were supplemented to enhance the performance. The CW media rapidly reached adsorption saturation with respect to metals (except Fe and Cr) without an external carbon source, while the addition of DW and PLB stimulated sulfate reduction activity and achieved efficient biogenic metal removal, primarily by the formation of hydroxide and sulfide precipitates and concomitant co-precipitation. The WS-amended CWs performed notably better than the control systems, not only in sequestering more metals and rapidly establishing favourable environments for biogenic metal abatement but also in supporting better growth of plants and functional microbes. The external organic carbon input greatly shaped the bacterial community compositions in the CWs, with substantial increases in the proportions of core functional populations involved in AMD biotreatment. Cooperation among Cellulomonas, Propioniciclava and sulfate-reducing bacteria (SRB), dominated by Desulfobulbus and Desulfatirhabdium, was the primary biogenic mechanism of AMD remediation in the CWs. Cellulosic waste-amended CWs with DW and PLB addition offer a promising eco-technology for AMD remediation.


Assuntos
Águas Residuárias , Áreas Alagadas , Biodegradação Ambiental , Mineração , Sulfatos , Eliminação de Resíduos Líquidos
5.
Bioresour Technol ; 302: 122890, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32014728

RESUMO

Biochar-based subsurface-flow constructed wetlands (CWs) with intermittent aeration (IA) or tidal flow (TF) oxygen supply strategies were established to treat domestic wastewater. The results showed that biochar achieved higher nutrient removal and lower greenhouse gas (GHG) emissions than ceramsite while supporting more diverse bacterial communities and higher abundances of functional taxa. Both IA and TF effectively enhanced nutrient removal, though the latter was more efficient and practical, and aeration conditions greatly influenced nutrient removal efficiency. GHG emissions were decreased by IA but were slightly increased by TF. Both oxygen supply methods significantly shaped the biofilm microbial communities and influenced biodiversity and richness, with observably higher proportions of potential nitrifiers and denitrifiers present in aerated CWs. Overall, biochar-based CWs operated with oxygen supply strategies provide superior treatment of decentralized wastewater.


Assuntos
Gases de Efeito Estufa , Áreas Alagadas , Carvão Vegetal , Nitrogênio , Oxigênio , Eliminação de Resíduos Líquidos , Águas Residuárias
6.
Microb Biotechnol ; 12(5): 1014-1023, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31241863

RESUMO

Biological approaches are considered promising and eco-friendly strategies to remediate Hg contamination in soil. This study investigated the potential of two 'green' additives, Hg-volatilizing bacteria (Pseudomonas sp. DC-B1 and Bacillus sp. DC-B2) and sawdust biochar, and their combination to reduce Hg(II) phytoavailability in soil and the effect of the additives on the soil bacterial community. The results showed that the Hg(II) contents in soils and lettuce shoots and roots were all reduced with these additives, achieving more declines of 12.3-27.4%, 24.8-57.8% and 2.0-48.6%, respectively, within 56 days of incubation compared to the control with no additive. The combination of DC-B2 and 4% biochar performed best in reducing Hg(II) contents in lettuce shoots, achieving a decrease of 57.8% compared with the control. Pyrosequencing analysis showed that the overall bacterial community compositions in the soil samples were similar under different treatments, despite the fact that the relative abundance of dominant genera altered with the additives, suggesting a relatively weak impact of the additives on the soil microbial ecosystem. The low relative abundances of Pseudomonas and Bacillus, close to the background levels, at the end of the experiment indicated a small biological disturbance of the local microbial niche by the exogenous bacteria.


Assuntos
Bacillus/metabolismo , Carvão Vegetal/metabolismo , Lactuca/química , Mercúrio/metabolismo , Pseudomonas/metabolismo , Microbiologia do Solo , Poluentes do Solo/metabolismo , Adsorção , Bacillus/crescimento & desenvolvimento , Proteínas de Bactérias , Biotransformação , Recuperação e Remediação Ambiental , Lactuca/crescimento & desenvolvimento , Raízes de Plantas/química , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/química , Brotos de Planta/crescimento & desenvolvimento , Pseudomonas/crescimento & desenvolvimento , Volatilização
7.
Bioresour Technol ; 279: 34-42, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30710818

RESUMO

In this study, biofilters (BFs) packed with inorganic (ceramsite and lava rock) and organic (fibrous carrier and biological ball) materials were applied in a tide-flow mode at three flooded/drained (F/D) time ratios (16/8 h, 12/12 h and 8/16 h) to treat heavily polluted river water. The results showed that higher ammonium and phosphorus removals were achieved with BFs filled with ceramsite (95-97% and 76-77%) and lava rock (87-92% and 84-94%), while fibrous carrier-packed BFs obtained better total nitrogen removal (37-44%). Moreover, the F/D time ratio of 16/8 h was slightly preferable for pollutant removal. High-throughput sequencing analysis illustrated that the relative abundance of potential denitrifiers that developed on organic media was much higher than those on inorganic substrates. The results indicated that the combination of inorganic materials and fibrous carriers as substrates could be an effective strategy for enhancing overall pollutant removal in BFs.


Assuntos
Filtração/métodos , Microbiota , Rios/química , Compostos de Amônio/isolamento & purificação , Bactérias , Nitrogênio/isolamento & purificação , Fósforo/isolamento & purificação , Poluição da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...